
Dude! Where's my Ransomeware? A Flare-On Challenge 1

Dude! Where's My
Ransomware?:
A Flare-On Challenge

SERIES ONE, VOLUME ONE

BLAINE STANCILL + JOSHUA WANG

Dude! Where's my Ransomeware? A Flare-On Challenge1

Dude! Where's my Ransomeware? A Flare-On Challenge 2

There are many tricks to the

tradecraft when analyzing

unknown binaries, and it requires

constant honing of skills to stay

on top of the latest malware and

campaigns. Solving reverse-

engineering challenges is one way

to keep your skills sharp. In our

previous post, we discussed some

tips from the Flare-On Challenge.

Now we’ll take a deeper dive into

one of the specific challenges

(Challenge #2), walking through

the “DudeLocker.exe” binary and

a file called “BusinessPapers.doc”.

This is a great use case for seeing

how ransomware works on a

basic level, and will provide some

useful tips that you can implement

next time you’re investigating an

unknown binary.

Getting Started

When analyzing an unknown

binary, you’ll usually be performing

a dance between static and

dynamic analysis. As a rule of

thumb, always use separate

virtual machines (VM) when doing

these forms of analysis. Here’s an

example of why it’s a bad idea to

do both on the same VM. Imagine

you have performed hours of static

analysis and decided to run the

binary. Oh no! It took a code path

you didn’t account for and has

now encrypted all the files on your

box, including your static analysis

notes/files. That definitely is not an

ideal scenario!

Due to the nature of unknown

binaries, only execute/run them in

a dynamic analysis VM to prevent

interference with your static

analysis. This will additionally

give you the freedom to run the

binary, debug it, and revert to prior

VM snapshots whenever needed.

For instance, we reverted to prior

snapshots after executing/running

“DudeLocker.exe” a few times to

get a feel for what its behavior was

and to start with a clean system

each time.

Pro Tip: Take advantage of how

Windows recognizes file types and

remove the file extension prior to

transferring the binary into the

static analysis VM. This will prevent

Windows from executing it even if

double-clicked.

Dude! Where's my Ransomeware? A Flare-On Challenge3

With the infrastructure

established, the initial step

towards analyzing an unknown

binary is to determine the file

type or in our case what kind

of files “DudeLocker.exe” and

“BusinessPapers.doc” are. On

Mac/Linux the ‘file’ command

comes in handy (see below).

The ‘file’ command determines

the file type by looking for “magic

bytes” within a file. These “magic

bytes”, which are described in more

detail elsewhere, are frequently

unique to a specific file type and

can usually be found at or near the

beginning of a file.

The file “BusinessPapers.doc” is

not recognized as any particular

file type even though its extension

is “.doc”; rather, it is shown to be

“data”. However, “DudeLocker.

exe” is recognized as a 32-bit PE

executable. If you were to take a

slightly closer look at the beginning

bytes using the ‘xxd’ command,

which displays a hex dump of a

file, you can easily see the “magic

bytes” are “MZ” or 4D 5A.

To understand how the ‘file’

command knows other attributes

about the file such as its

architecture type (32-bit), you’ll

need to understand the file format

in more detail. In the reverse-

engineering world, you likely

need to become very familiar with

files that execute. On Windows

these are files that follow the PE

format. On Linux they are files that

follow the ELF format and on Mac,

Mach-O. To get familiar with the

PE format we highly recommend

Iczelion’s PE tutorials as well as this

Microsoft article.

Dude! Where's my Ransomeware? A Flare-On Challenge 4

Light Static Analysis:

Quick Look

“DudeLocker.exe”

Generally, once you’ve established

the type of file you’re working with,

you can perform some light static

analysis and look for interesting

nuggets of information prior to

running it dynamically. We know

“DudeLocker.exe” is a Windows

executable. Some tools to use

for static analysis of Windows

executables are CFF Explorer,

Detect It Easy, Resource Hacker,

and IDA Pro/Free.

A great way to start static analysis

on any binary is the tried and

true strings utility. There are

many programs that can extract

strings from a binary -- in Linux/

Mac there’s even a ‘strings’

command. Strings found in a binary

can sometimes leak precious

information such as URLs, email

addresses, passwords, packer

names, registry key names, etc…

and are worth exploring. We’ll

use IDA Pro for the moment on

“DudeLocker.exe” to view its strings.

Pro-Tip: When extracting strings

from a binary, there will usually

be a minimum length setting. Five

Dude! Where's my Ransomeware? A Flare-On Challenge5

characters are typically enough.

Also be sure to specify all possible

string types depending on what

your strings utility is capable of

extracting. In IDA Pro you can find:

Ascii/C type, Unicode, and Pascal

type strings.

Interestingly we see mentions of a

“Briefcase” and an image name “\\

ve_vant_ze_money.jpg”. Speculating

early on, we know briefcases

generally contain documents used

for business purposes and “ve_vant_

ze_money.jpg” sounds like some

kind of ransom note as it resembles

“we want the money”. We’ll see later

on exactly how these come into play.

After viewing the strings of an

executable, it’s a good idea to view

its imports (part of the PE format).

Imports are functions imported

from external libraries that provide

functionality to an executable and

can shed some light on the binary’s

potential behavior or capabilities.

Let’s look at the imports for

“DudeLocker.exe”, again using IDA

Pro for the moment.

From these imports we can get

a feeling for some of the binary’s

potential capabilities, including:

• File enumeration

- FindFirstFileW

- FindNextFile

• System fingerprinting

- GetVolumeInformationA

- GetVersionExW

• Resource access

- FindResourceW

- LoadResource

• Read/Write files

- ReadFile

- WriteFile

• Modify system parameters

- SystemParametersInfoW

• Output debug messages

Dude! Where's my Ransomeware? A Flare-On Challenge 6

- OutputDebugStringW

• Access specific folders via CSIDL

- SHGetFolderPathW

• Use of encryption

- CryptDeriveKey

- CryptEncrypt

• Perform hashing

- CryptCreateHash

- CryptHashData

- CryptGetHashParam

Pro-Tip: The ‘A’ vs ‘W’ at the end

of import functions denotes whether

the function uses ‘ANSI’ (typically

ASCII) or ‘wide’ (Unicode) characters.

To the untrained eye these imports

may seem innocuous, but if you

look at the potential capabilities as a

whole you can start to see how they

might be utilized by “DudeLocker.

exe” in general. For instance, what

type of behavior would you suspect

the following capabilities to express?

• File enumeration

• Read/Write files

• Use of encryption

These three capabilities are the

minimum required to express some

sort of ransomware behavior. While

imports are not a guaranteed way

of deriving behavior, as we’ve yet to

execute “DudeLocker.exe”, it’s always

good to think in terms of how the

imports could be utilized, especially

if used maliciously.

We could also have used a tool

called CFF Explorer to view the

imports of “DudeLocker.exe”. CFF

Explorer is great for viewing an

executable’s PE header information.

Let’s use it to explore “DudeLocker.

exe”. If we navigate to the “Section

Headers” tab has a “.rsrc” section,

which typically contains embedded

resources. These resources can be

anything from icons to images and in

some cases even malicious files.

Whenever you want to know

more about an executable’s

resources, you can always turn

to a tool called Resource Hacker.

This tool is the one-stop shop for

compiling, viewing, decompiling and

recompiling resources for both 32-

bit and 64-bit Windows executables.

Let’s open “DudeLocker.exe” with

Resource Hacker. We see there is

an “RCData”, or raw resource, with

an ID of “101”. This might be the

Dude! Where's my Ransomeware? A Flare-On Challenge7

“\\ve_vant_ze_money.jpg” image

we were hinted at in the strings. If

we factor in the potential import

capabilities - file enumeration and

encryption functions - “DudeLocker.

exe” is starting to resemble some

sort of ransomware. This would

make sense, especially given the

name of the executable which

resembles “CryptoLocker”, a famous

ransomware trojan introduced to the

world in 2013 which was responsible

for extorting millions of dollars from

its victims.

“BusinessPapers.doc”

In the case you can’t determine a

file’s type, it still has some useful

properties you can observe. For

instance, checking for the presence

of strings, as we did for “DudeLocker.

exe”, and the file’s entropy

characteristics are good starters.

High entropy (close to a value of 8

on a scale of 0-8) can be a sign of a

packed/compressed/encrypted file.

A great tool for checking both

strings and file/section entropy is

Detect-It-Easy (also via github). It’s

also useful for detecting file types,

compilers used, potential packers,

cryptographic functionality, and a lot

more. Let’s see if it can recognize the

file type for “BusinessPapers.doc”

and view its strings as well

as entropy.

 According to Detect-It-Easy,

“BusinessPapers.doc” has no

recognizable file type, the strings

appear to be gibberish, and it has

high entropy. All of these are tell-tale

signs of either packing/compression

or encryption. Remember our initial

observation of “DudeLocker.exe”

being potential ransomware? Maybe

this file was encrypted by it.

Light Dynamic

Analysis: Run it

and Observe

Only so much information can be

gleaned from light static analysis.

To gain more insight into a binary’s

behavior, it’s easiest to run it and

observe what it does -- in a dynamic

analysis VM, of course. In our case,

we know that “DudeLocker.exe” is

a 32-bit Windows executable and

has some potential ransomware

capabilities, so let’s run it and see if

Dude! Where's my Ransomeware? A Flare-On Challenge 8

our current observations hold.

Some great tools to use when

doing dynamic analysis are Process

Monitor (ProcMon) and Process

Explorer (ProcExp), both of which

are included in the SysInternal Suite

provided by Microsoft. Process

Monitor provides a detailed event

log of actions taken by the binary

and Process Explorer provides

a TaskManager type view of all

currently running processes,

making it easy to see if processes

spawn or exit.

Additionally, since we saw the

import “OutputDebugStringW” in

“DudeLocker.exe”, we’ll also be using

a tool called DebugView which

displays any debug statements

and is also included in Microsoft’s

SysInternal Suite. Let’s begin the

light dynamic analysis by using

Process Monitor and DebugView

to monitor the execution of

“DudeLocker.exe”

Pro-Tip: In ProcMon you can set

up specific filters if you want to

look for more details than are set

by default. If you need even more

detail about the execution flow of

a binary, try API Monitor. It can get

information regarding thousands of

Windows APIs potentially called by

an executable.

From ProcMon output it appears

“DudeLocker.exe” accesses the

Desktop, attempts to access a

directory called “Briefcase”, and

then exits. From DebugView output

it seems we’re no longer reverse

engineers, but more like software

engineers taking a debug print

statement approach to debugging.

The attempt to open the directory

“Briefcase” on the Desktop failed,

returning a “NAME NOT FOUND”

error. Due to the almost immediate

exit of the binary, we can assume

that the binary requires a “Briefcase”

directory on the Desktop to continue

its execution. So let’s create an

empty folder called “Briefcase” on

the Desktop and re-run it.

Interesting. Now that we have

the “Briefcase” folder on the

desktop, “DudeLocker.exe” does

something extra prior to exiting,

it queries for system specific

information (a technique usually

called fingerprinting) as seen by the

Dude! Where's my Ransomeware? A Flare-On Challenge9

“QueryInformationVolume” event.

In addition, the debug output says

“I’m out of my element”. At this point

we have no further clues as to what

“DudeLocker.exe” requires in order

to continue its execution.

Deep Static Analysis

(Disassembler)

Once you’ve seen enough general

behavior from an unknown binary

or reach a dead end during light

dynamic analysis you’ll typically

want to take a deeper look into

the binary statically. Let’s start

our deep dive into static analysis

of “DudeLocker.exe” via our

disassembler of choice, IDA Pro.

Once in the disassembler you

can choose to start your analysis

generally one of two ways:

1 Start from the main/start function

and work your way through the

binary. This a top-down approach.

2 Start at an interesting string, code

block, import function, or function

and work your way backwards.

This is a bottom-up approach.

Since we hit a roadblock after

adding the “Briefcase” folder to the

desktop, let’s find the string “I’m

out of my element” seen from the

DebugView output and work our

way backwards through IDA.

Once you’ve found the string in

IDA’s string view (shift + F12) you can

double-click it to reach the string

in the “.data” section. From here

we can utilize the power of cross-

referencing by pressing ‘x’ to see

where this string is referenced in the

binary. Following this backwards we

can see how we would arrive at this

execution path.

When doing a deep dive static

analysis, it helps if you label

functions and data as you go. In

IDA this is done by pressing ‘n’ on

a selected function or data name.

Even if you don’t know what the

function really does, a best guess

label still helps as you can always

re-label it with something more

descriptive once you understand

it better.

Dude! Where's my Ransomeware? A Flare-On Challenge 10

Pro-Tip: If you can’t understand the

functionality of a function because

there are other functions and data

being referenced within it, it can help

if you work your way bottom-up. This

way, once you’ve labeled the lowest

and simplest functions you’ll have

a better understanding of what the

functions above it do.

Going back to the observed

execution path in “DudeLocker.exe”,

we see there’s a function we’ve

labeled “GetVolumeSerialNumber”

that decides the fate of execution.

Let’s see what the function

“GetVolumeSerialNumber”

actually does.

The function compares our VM’s

File System volume serial number

against 0x7DAB1D35. If our VM’s

serial doesn’t match this expected

value, the function returns 0 in EAX,

causing the execution flow to go

down the path that prints out the

debug string “I’m out of my

element” and exit. To make the

execution continue, we’ll need some

way to modify our VM’s volume

serial number.

While we could jump over to our

dynamic analysis VM and try to

figure out what would happen if

we forced our VM’s volume serial

number to match, let’s stay in static

analysis mode and try to figure it

out ourselves.

If we follow the path that would be

taken if the serial numbers matched,

we notice a reference to some

data blob and a function that has

an XOR in it. Not always, but when

you encounter a data blob and an

XOR, there’s a good chance some

XOR en/decryption is going on.

This function, which we’ve labeled

“DecryptSeedValue”, takes as

parameters: a data blob, an output

buffer, a volume serial number, and

the length of the output buffer.

The data blob is XOR decrypted

using the volume serial number

and stored in the output buffer. You

could decrypt the data blob yourself

now that you know the general

algorithm and values being used via

a script, or you could use dynamic

analysis to see the decrypted blob

-- we’ll use dynamic analysis later

for this.

Dude! Where's my Ransomeware? A Flare-On Challenge11

Diving into these could require a

blog post in itself. We’ll leave it as an

exercise for the reader to familiarize

themselves with the Windows

cryptography API, specifically how

to use AES encryption in CBC mode.

See this tutorial for some good

code examples. An overview of

these functions and this portion of

program execution is as follows:

1 SHA-1 hash the decrypted

data blob

2 Use the SHA-1 hash to derive an

AES-256 key

3 Recursively encrypt each file (and

each file in subdirectories) in the

“Briefcase” directory:

 A. Derive a unique encryption

key for the file:

 1. Get the file’s name

(including extension) and

convert to lowercase

 2. MD5 hash the lowercase

filename

 3. Use MD5 hash as

initialization vector (IV) for

AES-256 encryption, thus

creating a “unique key”

per file

 B. Encrypt the file:

 1. Open the file and read it in

16KB chunks

 2. Use the unique encryption

key based on filename to

encrypt each 16KB chunk

 3. Write the encrypted chunk

of data back to the file

After all files have been encrypted

in the Briefcase directory,

“DudeLocker.exe” will look up

a resource.

Notice that the function

FindResourceW is looking for a

RT_RCDATA, or raw, resource with

an ID of 101. Looking back at the

Resource Hacker output, we can

see the resource with ID 101 is the

ransom note image we saw earlier!

“DudeLocker.exe” will write this

image to disk in the “Briefcase”

directory and name it “ve_vant_ze_

money.jpg”.

Then “DudeLocker.exe” will check

if the operating system (OS) is Vista

or higher by calling GetVersionEx

and comparing the returned

OSVERSIONINFOEX structure’s

dwMajorVersion value against

Dude! Where's my Ransomeware? A Flare-On Challenge 12

the value 5. A dwMajorVersion

of 6+ indicates Vista+. Thus, if

the current version is 5 or below,

we’re not on Vista+. See this

article for information about the

OSVERSIONINFOEX structure and

the differences in major vs minor

version number. If the OS is Vista+,

“DudeLocker.exe” will set the

ransom note image as the desktop

background and exit.

Recap

Let’s briefly recap what we know

about “DudeLocker.exe”:

• The binary needs a directory on the

Desktop named “Briefcase”

• The binary needs a volume serial

number of 0x7DAB1D35 to

continue execution and derive an

AES-256 encryption key

• The binary will encrypt all files in

the “Briefcase” directory using their

filename as the IV for the AES-256

encryption algorithm

• The binary will look up the

resource corresponding to ID 101

and write this to disk as “ve_vant_

ze_money.jpg” in the “Briefcase”

directory

• If on Vista+ it will set the ransom

note image “ve_vant_ze_money.

jpg” as the desktop background

The question now is what to do

with the “BusinessPapers.doc” file.

We suspect it’s been previously

encrypted by this variant of

ransomware, but how can we

decrypt it?

Hopefully you’ve familiarized

yourself with AES encryption and

had the “aha moment”! AES is a

symmetric encryption algorithm

meaning that as long as we can

derive the same key used to encrypt

the file we can decrypt the file. Well,

we know its filename and we know

the expected volume serial number,

thus we can derive the same key!

Additionally, if you also familiarized

yourself with the Windows

cryptography API, you’ll notice

that both CryptEncrypt and

CryptDecrypt share the same first

6 parameters.

Dude! Where's my Ransomeware? A Flare-On Challenge13

The significance of these functions

sharing the same 6 first parameters

is that we can use CryptDecrypt

in place for CryptEncrypt. Now

we have a way of decrypting

“BusinessPapers.doc”! To actually do

this we’ll patch/modify the Import

Address Table (IAT) of “DudeLocker.

exe” by changing CryptEncrypt to

CryptDecrypt.To patch a binary

means to directly modify its

contents either when it’s loaded in

memory or on disk. This is easily

accomplished using CFF Explorer

and saving it as another executable.

Deep Dynamic

Analysis (Debugger)

Once you’ve accomplished a deep

dive in static analysis you’ll generally

have a better understanding of the

unknown binary. By performing

dynamic analysis, you can validate

your understanding of the binary.

However, in some cases your static

analysis might be too complicated

to determine what a particular

function does. Dynamic analysis can

also be utilized in these situations

to experiment with the difficult

function by providing it various

inputs and monitoring what output

it generates.

We have a pretty solid idea of what

“DudeLocker.exe” does and have

patched the binary’s IAT to decrypt

files instead of encrypt them. We

could essentially run the binary and

have it decrypt “BusinessPapers.

doc” for us (making sure this file is

in the Briefcase directory). However,

there is still one last hurdle we must

conquer -- forcing the volume serial

number to be 0x7DAB1D35. To do

this let’s open the patched binary

Dude! Where's my Ransomeware? A Flare-On Challenge 14

with a debugger. We’ll be using

x64dbg, which is an open source

x64/x32 debugger for Windows.

Once opened, depending on your

debugger and its preferences,

it should hit a breakpoint either

at the first system function that

initialized the patched binary or

at the entry point of the patched

binary. If it doesn’t hit a breakpoint

and continues to run, check your

debugger’s preferences and make

sure “Entry Breakpoint” is set and

re-run it with the debugger.

The goal of opening the file in

a debugger is so we can hit a

breakpoint at the spot where the

patched binary will compare the

system returned volume serial

number to the desired value

0x7DAB1D35 and dynamically

modify the returned value to match.

However, before we start setting

breakpoints it’s always good to

know if the binary in question uses

address space layout randomization

(ASLR). If it does you might have

to re-set your breakpoints each

time you re-run the binary in the

debugger and you might also

have to rebase the binary in your

disassembler to match the new

image base address so your

addresses match up in both the

debugger and disassembler. An

example of how to rebase your

binary in a IDA Pro can be

found here.

Pro Tip: If not using ASLR, the

default base address for an .exe

file is 0x400000 for 32-bit images

or 0x140000000 for 64-bit images.

For a DLL, the default base address

is 0x10000000 for 32-bit images or

0x180000000 for 64-bit images.

Furthermore, some debuggers,

like WinDbg, will allow you to set

unresolved breakpoints. These

are breakpoints that are defined

by specifying an offset from the

start of a function to break on. This

bypasses ASLR because when a

binary that uses ASLR is loaded

into memory, even if the binary file

is rebased, each instruction within

the executable remains at the same

offset from the base address.

The only thing that changes is

the base address the binary file is

Dude! Where's my Ransomeware? A Flare-On Challenge15

loaded at. To see if the binary uses

ASLR check in the PE header:

• FileHeader -> OptionalHeader ->

DllCharacteristics

And see if the following flag is set:

• IMAGE_DLLCHARACTERISTICS_

DYNAMIC_BASE = 0x0040; //

The DLL can be relocated at load

time. We can see in CFF Explorer

that “DudeLocker.exe” does not

use ASLR as “Dll can move” is not

checked:

Since it doesn’t use ASLR we’re

free to set breakpoints and rely

on them. Let’s start by setting the

following breakpoints (see below).

Pro Tip: Most debuggers let you set

breakpoints via a breakpoint menu

tab or by navigating to that address

and manually setting it. X64dbg

and Ollydbg both let you directly

navigate to an address by pressing

CTRL+g and manually setting a

breakpoint by pressing the F2 key.

Once set, continue execution

(typically F9 key) until a breakpoint

is hit -- it should pause execution

at 0x00401063. From here we can

right-click and modify the topmost

stack value (this corresponds

to EBP-4 or the volume serial

number returned by the system) to

0x7DAB1D35.

If you single-step (typically F8 key),

the following jump instruction

should not be taken and EAX should

be set to the value 0x7DAB1D35.

Now if we continue execution

(typically F9 key) until a breakpoint

is hit we should pause execution at

0x00401AD1. We’re breakpointing

here to point out the decoded data

blob that is hashed and used as the

AES-256 key. Specifically a pointer

to this decoded data blob is in ECX

at this point. If we right-click the

ECX register and select “Follow in

Dump”, we should see the value

“thosefilesreallytiedthefoldertogether”.

Pretty neat!

Dude! Where's my Ransomeware? A Flare-On Challenge 16

Let’s go ahead and let this binary

run to completion by continuing

execution (typically F9 key).

The background should be

set to the ransom note image

we saw in Resource Hacker

previously (assuming you’re using

a Vista+ OS) and if we extract the

“BusinessPapers.doc” file and run

the ‘file’ command on it again we

should see it is no longer classified

as “data”.

That’s right, it’s a JPEG! Using

command ‘xxd’ we can see it has the

magic byte signature: FF D8 FF E0

nn nn 4A 46 49 46 00 01 (where “nn”

can be any byte). We then rename

the file to "BusinessPapers.jpg."

Awesome! We’ve been able to

recover the previously encrypted

file and found the flag for this

challenge: cl0se_t3h_f1le_0n_

th1s_0ne@flare-on.com.

Conclusion

This blog post walked through

the steps and mindset required to

solve just one challenge within the

10-part 2016 Flare-On Challenge.

Keeping in mind that this is only

level 2, the later levels become

much more difficult and present

new challenges. By participating in

reverse engineering and malware

focused CTFs such as the Flare-

On Challenge, you can quickly

gain skills and expose yourself to

different problem sets that you

would otherwise only encounter

in the real world by analyzing

malicious binaries of the

same complexity.

We covered the basic fundamentals

that will serve as a useful starting

point for anyone interested in

developing or honing their reverse

engineering skills. Some of the

important concepts we discussed

include learning how to differentiate

between different file types,

performing a combination of light

and deep static and dynamic

analysis, understanding how to

use different tools to aid in each

Dude! Where's my Ransomeware? A Flare-On Challenge17

of these types of techniques, and

using different analysis strategies

(bottom-up vs top-down).

Reverse engineering is an art form.

Even when analyzing more complex

binaries, these core concepts are

still applicable. The only thing that

changes is the speed at which we

are able to perform our analysis and

understand what the binary does.

As a reverse engineer gains more

experience they also learn shortcuts

and pick up additional tools and

techniques that allow them to

reverse faster and more efficiently.

We will cover some of these

additional tools and techniques in

our next blog post.

Lastly, we would like to thank

FireEye’s Flare Team again for

putting together another solid set of

challenges this year! There is great

learning value in participating in

CTFs like the Flare-On Challenge.

If you have never participated in a

CTF or related challenges, we highly

recommend giving it a try.

Dude! Where's my Ransomeware? A Flare-On Challenge 18

Dude! Where's my Ransomeware? A Flare-On Challenge19

© Endgame 2017 | 3101 Wilson Blvd, Arlington, VA 22201 | 844-357-7047

